

SunSim Storage – Manuale d'uso

Introduzione

Il programma *SunSim Storage* è stato ideato e realizzato per calcolare in modo semplice, veloce e attendibile il comportamento di sistemi fotovoltaici connessi alla rete elettrica e dotati di accumulo energetico.

Molto spesso il calcolo energetico, e quindi anche economico, per gli impianti fotovoltaici dotati di accumulo è effettuato sulla base di dati medi annuali o stagionali, che non tengono conto del reale andamento dei carichi elettrici. Si tratta di calcoli approssimati che nella maggior parte dei casi conducono a risultati del tutto errati in quanto, soprattutto a livello di singola utenza, l'andamento fortemente discontinuo dei consumi non può essere ricondotto a comportamenti mediati nel tempo.

A dimostrazione di quanto detto, si provi a considerare se il metodo di calcolo finora adottato è in grado di rispondere alle seguenti semplici domande:

- Tiene conto dei diversi comportamenti stagionali, considerando la diversa disponibilità della fonte solare e il diverso andamento dei carichi (es. illuminazione, apparecchi riscaldanti / raffrescanti, ecc.)?
- Tiene conto del diverso andamento dei carichi nei giorni settimanali (lavorativi, sabati e domeniche)?
- Tiene conto dei probabili periodi di inattività estiva (ferie, chiusure, ecc.)?

– Tiene conto della diversa tipologia dei carichi (residenziale, commerciale, industriale, ecc.)? Si osservi che, mentre per i normali sistemi fotovoltaici per servizio in rete quello che conta in realtà sono i valori medi annui di produzione e consumo, nel caso di impianti con accumulo è indispensabile valorizzare dal punto di vista energetico ed economico l'accumulo stesso. Per fare questo è però necessario tenere conto in dettaglio di quanta energia l'accumulo è in grado di trasferire verso l'autoconsumo. Solo in questo modo si può valutare se la sua presenza è giustificata e quale taglia è in grado di ottimizzarne il comportamento.

Metodo di calcolo

SunSim Storage è un programma di simulazione che lavora nel dominio del tempo. Per quanto riguarda la produzione fotovoltaica, i risultati sono calcolati ricostruendo i percorsi solari durante l'anno, valutando gli effetti sul sito negli istanti considerati ed infine sommando tra loro in modo opportuno i risultati parziali.

I dati di consumo sono invece ricavati da file e confrontati, istante per istante, con la produzione fotovoltaica e l'energia accumulata. La presenza della rete elettrica permette di pareggiare il bilancio energetico, infatti per ogni istante considerato:

 se la produzione fotovoltaica è maggiore dei consumi il sistema indirizza il surplus verso l'accumulo l'energia in eccesso e, quando l'accumulo è saturo, la stessa energia viene invece convogliata in rete;

- se la produzione fotovoltaica è inferiore ai consumi, il sistema preleva dall'accumulo l'energia mancante e, quando l'accumulo è vuoto o è arrivato al minimo tecnico, tale energia viene prelevata dalla rete.
- I flussi energetici corrispondenti sono illustrati nella figura seguente.

SunSim Storage effettua la simulazione del comportamento energetico del sistema composto da impianto fotovoltaico, accumulo, carichi propri e rete elettrica per un intero anno solare.

L'approccio simulativo, identico a quello utilizzato da *SunSim 8.0*, consente di sfruttare dati di partenza in formato semplice e comprensibile (radiazione solare mensile diretta e diffusa, serie temporali per i carichi elettrici). I risultati, per contro, richiedono una notevole quantità di calcoli (il passo temporale adottato da *SunSim Storage* è di 5 minuti) e nell'Appendice B sono mostrati alcuni dettagli relativi al metodo utilizzato.

L'intero programma è scritto in linguaggio C/C++.

Requisiti minimi di sistema

Il programma *SunSim Storage* è in grado di funzionare praticamente su qualsiasi PC reperibile in commercio con sistema operativo Windows Vista o superiore e con una risoluzione dello schermo minima di 1280×720.

Le risorse richieste da *SunSim Storage* sono comunque limitate, in quanto il programma non richiede l'installazione di driver specifici, non fa uso di librerie DLL proprie e può anche funzionare senza essere stato precedentemente installato, in quanto è possibile lanciarlo da una qualsiasi cartella, contenuta in un dispositivo fisso o anche mobile quale ad esempio un CD o un memory stick.

Nella stessa cartella di *SunSim Storage* deve però essere presente il file loads.txt che contiene i dati temporali relativi ai consumi complessivi dei carichi elettrici considerati.

Installazione

SunSim Storage non ha bisogno di essere installato e può essere fatto partire da una qualsiasi cartella contenuta su supporto sia fisso che rimovibile semplicemente facendo un doppio click sull'icona del programma.

Preliminarmente, risulta spesso conveniente copiare il file eseguibile sul Desktop (assieme a loads.txt) e, mediante il pulsante destro del mouse, attivare il comando "Aggiungi al menu Start".

Protezione

SunSim Storage è protetto mediante un codice di 3 caratteri che vengono forniti al momento della consegna e che devono essere inseriti nell'apposito campo editabile, indicato come Insert Code \rightarrow . Se i 3 caratteri digitati sono corretti, il campo editabile scompare e al suo posto appare la scritta Code accepted. In caso contrario appare un messaggio di errore e il programma termina l'esecuzione.

Ogni copia di *SunSim Storage* distribuita in licenza è personalizzata, in quanto nella schermata principale reca la dicitura del proprietario, identica a quella riportata nella licenza d'uso.

Descrizione del funzionamento

Il programma *SunSim Storage* si compone essenzialmente di una finestra di dialogo principale tramite la quale è possibile tenere sotto controllo tutti i principali parametri che intervengono nei calcoli.

Nel seguito saranno prese in considerazione le singole parti della finestra di lavoro principale e le varie sottofinestre che è possibile aprire.

Dalla schermata principale è possibile individuare le aree che contengono i comandi principali per il programma:

- Solar data-base Meteo station
- PV Power, BOS (Sistema fotovoltaico)
- Storage, DOD, η chsrge/disch.
- Loads data-base (carichi)

Vi sono poi alcune aree in cui è possibile selezionare la presentazione grafica dei risultati:

- Solar, Production, Consumption, Prod. + Cons., Storage, Grid exchange, Self consumption, State of Charge
- Monthly, Day monthly, Daily
- Pulsanti di scorrimento per il mese e il giorno corrente

Ed infine sono presenti un'area che riporta i risultati relativi all'anno e un'area che permette di salvare i valori calcolati su file .RTF e .CSV:

La figura seguente riporta un esempio di schermata principale. Poiché quasi tutte le operazioni possono essere effettuate senza aprire altre finestre, la schermata principale dispone di una finestra grafica nella quale possono essere visualizzati tutti gli andamenti dei risultati selezionando quello che interessa.

Dati di input

Solar data-base - Meteo station

Questo riquadro gestisce la scelta della fonte solare e l'orientamento del campo fotovoltaico. Nella figura seguente è mostrato un esempio di questa sezione.

Clima	ate-SAF PVGIS - Roma	-1 _				
ţ	Latitude = 41.9°	New Site				
î	← → Y	/early solar energies leam = 1276 kWh/m ²				
ţ	Tilt = 30° E	Diffuse = 539 kWh/m ²				

Tramite il menu a tendina è possibile selezionare i dati di radiazione diretta e diffusa sul piano orizzontale per la località desiderata. Questi valori si riferiscono a quanto riportato nella norma UNI 10349-1:2016 per le località italiane e ai metodi di calcolo utilizzati dal Joint Research Centre (JRC) di Ispra per l'Europa, il Medio Oriente, il Nord Africa e alcune località italiane rappresentative.

Le informazioni disponibili su PVGIS sono di dominio pubblico e disponibili sul sito web del JRC.

I dati che si riferiscono alla norma UNI 10349-1:2016 sono relativi alle 110 provincie italiane di seguito riportate.

Agrigento	Chieti	La Spezia	Padova	Sondrio
Alessandria	Carbonia-Inglesias	Lecco	Parma	Siracusa
Ancona	Caltanissetta	Lodi	Perugia	Sassari
Aosta	Cuneo	Lecce	Pescara	Savona
Ascoli Piceno	Como	Livorno	Piacenza	Taranto
L'Aquila	Cremona	Latina	Pisa	Teramo
Arezzo	Cosenza	Lucca	Pordenone	Trento
Asti	Catania	Monza-Brianza	Prato	Torino
Avellino	Catanzaro	Macerata	Pesaro e Urbino	Trapani
Bari	Enna	Messina	Pistoia	Terni
Bergamo	Ferrara	Milano	Pavia	Trieste
Biella	Foggia	Mantova	Potenza	Treviso
Belluno	Firenze	Modena	Ravenna	Udine
Benevento	Fermo	Massa-Carrara	Reggio di Calabria	Varese
Bologna	Forlì	Matera	Reggio nell'Emilia	Verbania
Brindisi	Frosinone	Napoli	Ragusa	Vercelli
Brescia	Genova	Novara	Rieti	Venezia
Barletta-Andria-Tr	Gorizia	Nuoro	Roma	Vicenza
Bolzano	Grosseto	Ogliastra	Rimini	Verona
Cagliari	Imperia	Oristano	Rovigo	Medio Campidano
Campobasso	Isernia	Olbia-Tempio	Salerno	Viterbo
Caserta	Crotone	Palermo	Siena	Vibo Valentia

I dati che si riferiscono ai metodi di calcolo adottati dal Joint Research Centre fanno riferimento alle categorie Classic PVGIS, PVGIS-Helioclim e Climate-SAF PVGIS. In totale, sono stati individuati i 88 siti sotto elencati che si riferiscono al metodo di calcolo Classic PVGIS.

Belfast (UK)	Hamburg (D)	Roma (I)
Birmingham (UK)	Munchen (D)	Campobasso (I)
Edinburgh (UK)	Warszawa (PL)	Napoli (I)
London (UK)	Praha (CZ)	Potenza (I)
Manchester (UK)	Bern (CH)	Bari (I)
Dublin (IRL)	Innsbruck (A)	Lecce (I)
Reykjavik (IS)	Wien (A)	Cosenza (I)
Oslo (N)	Budapest (H)	Reggio Calabria (I)
Stockholm (S)	Barcelona (E)	Palermo (I)
Helsinki (SF)	Bilbao (E)	Catania (I)
Kobenhavn (DK)	Granada (E)	Ragusa (I)
Vilnius (LT)	Madrid (E)	Sassari (I)
Riga (LV)	Sevilla (E)	Cagliari ()
Tallin (EST)	Zaragoza (E)	Ljubliana (SLO)
Moskva (RU)	Lisboa (P)	Zadar (HR)
Minsk (BY)	Porto (P)	Beograd (SRB)
Kiev (UA)	Aosta (I)	Bucaresti (R)
Bordeaux (F)	Bolzano (I)	Sofija (BG)
Lyon (F)	Torino (I)	Tirana (AL)
Marseille (F)	Milano (I)	Athina (GR)
Nice (F)	Padova (I)	Thessaloniki (GR)

Paris (F)	Udine (I)	Istanbul (TR)
Rennes (F)	Genova (I)	Valletta (M)
Strasbourg (F)	Bologna (I)	Nicosia (CY)
Bruxelles (B)	Firenze (I)	Casablanca (MA)
Amsterdam (NL)	Ancona (I)	Algier (DZ)
Luxembourg (L)	Perugia (I)	Tunis (TN)
Berlin (D)	Grosseto (I)	Tripoli (LAR)
Frankfurt (D)	Pescara (I)	Cairo (ET)
Freiburg (D)		

Per seguenti 3 siti il riferimento è invece rappresentato dal metodo di calcolo PVGIS-Helioclim.

Doha (Q) Dubai (UAE) Riyad (KSA)

Infine, per i seguenti 26 siti in Italia è stato fatto riferimento anche al metodo di calcolo Climate-SAF PVGIS.

Aosta	Bolzano	Torino
Milano	Padova	Udine
Genova	Bologna	Firenze
Ancona	Perugia	Grosseto
Pescara	Roma	Campobasso
Napoli	Potenza	Bari
Lecce	Cosenza	Reggio Calabria
Palermo	Catania	Ragusa
Sassari	Cagliari	

Come si può vedere, alcuni siti italiani sono richiamabili sia come UNI 10349 che come JRC. In questo modo è possibile rendersi conto di come i dati solari di diversa provenienza vadano ad influire sui risultati.

Tramite una prima coppia di pulsanti contrassegnati con le frecce $\downarrow e \uparrow è$ possibile modificare la latitudine del sito da 0° N a 90° N partendo da quella della località prescelta. L'uso di questi pulsanti per piccoli aggiustamenti non comporta particolari problemi, tuttavia nel caso di ampie variazioni va sempre tenuto presente che i dati di radiazione solare caricati dal sito potrebbero non essere compatibili con la latitudine voluta, soprattutto nel caso di spostamenti verso Nord. In questi casi occorre quindi sempre verificare la correttezza dei dati di radiazione e modificarli quando occorre.

Vi è poi una seconda coppia di pulsanti contrassegnati con le frecce \downarrow e \uparrow , mediante i quali è possibile modificare l'inclinazione del piano dei moduli fotovoltaici da 0° N a 90° N. Allo stesso modo, con le frecce \leftarrow e \rightarrow è possibile modificare l'azimut tra -180° e +180° rispetto a Sud.

L'ultimo dei siti in elenco è indicato come **<New site>**. Si tratta di un sito per il quale è possibile introdurre i valori di radiazione solare a partire da un sito esistente.

In questa sezione sono anche visualizzati i valori annuali di radiazione solare relativi alla località selezionata e al particolare orientamento del piano dei moduli fotovoltaici. Tali valori sono relativi alla radiazione diretta, diffusa e globale.

Il pulsante *New Site* permette di personalizzare i valori di radiazione solare diretta e diffusa mediante un'apposita finestra di dialogo visibile nella figura seguente.

Per mezzo dei pulsanti Up e Dw è possibile incrementare o diminuire i valori di radiazione giornaliera media mensile diretta e diffusa. I valori da modificare sono scelti mediante una griglia di selezione attuata mediante delle caselle poste in corrispondenza sia dei mesi dell'anno che della radiazione diretta e della radiazione diffusa. In questo modo è possibile modificare uno o più valori contemporaneamente.

Ad esempio, nella figura è stata selezionata la radiazione solare diretta e diffusa per i mesi di agosto, settembre, ottobre e novembre. Agendo sui pulsanti Up e Dw è possibile quindi variare contemporaneamente i corrispondenti valori.

La finestra consente di salvare i nuovi valori impostati in appositi file .SIT e di aprire i file esistenti per recuperare i dati precedentemente salvati.

Produzione annua

Come si è visto, la sezione **Solar data base – Meteo station** si riferisce ai valori di radiazione solare intercettati dal piano dei moduli, a prescindere dalla tecnologia di conversione solare impiegata e dalle caratteristiche dell'impianto fotovoltaico.

In questa sezione, dedicata alla produzione annua, è invece possibile specificare la potenza nominale dell'impianto fotovoltaico (intesa come somma della potenza nominale dei moduli che lo compongono) e il rendimento complessivo (BOS) di tutta la catena fino ai morsetti di uscita. Nella figura seguente è mostrato un esempio di questa sezione.

PV Power	3.00 kWp	BOS	<mark>80.0</mark>	%
Yearly PV produ	iction = 5083 kW	'n		

Sulla base dei valori di radiazione solari precedentemente calcolati e delle caratteristiche dell'impianto indicate in questa sezione, è infine riportato il valore annuo di produzione dell'impianto fotovoltaico.

Caratteristiche dell'accumulo

Le caratteristiche dell'accumulo sono identificate dai parametri contenuti nella figura seguente, riportata come esempio.

Il parametro associato a Storage si riferisce al valore nominale della capacità dell'accumulo, espresso in kWh.

DOD (Depth Of Discharge) si riferisce alla percentuale massima dell'energia scaricabile da un accumulo elettrochimico prima che intervengano dei fenomeni di degrado. Questo parametro, tipicamente, si applica agli elementi al piombo-acido che non possono essere scaricati completamente. Un valore pari al 60%, come nell'esempio, significa che in realtà solo il 60% della capacità nominale dell'accumulo può essere utilizzata. Se invece l'accumulo utilizzato non presenta questi problemi è possibile indicare un valore pari al 100%.

Il parametro η charge/disch. tiene conto del fatto che non tutta l'energia immessa nell'accumulo può essere recuperata. Nell'esempio, il 75% dell'energia immessa è recuperata.

Loads data-base

Occorre premettere che i valori temporali dei carichi elettrici sono contenuti in un unico file denominato *loads.txt*. In questo file possono essere contenuti fino a un numero di 10 tipologie di carichi elettrici, anche presentati in modo differente tra loro.

LUaus ua	ala-Dase	
Italy_Ag	gregate_Re	sidential 👤
Adjust	0.00484	Yearly loads = 4357 kWh

Scegliendo uno specifico carico elettrico dal menu a tendina, immediatamente sotto viene visualizzato il valore complessivo annuo di assorbimento in kWh di tale carico. In generale è però necessario adattare tale valore alle proprie esigenze, pur mantenendone l'andamento nel corso del tempo, per cui, mediante il parametro Adjust è possibile introdurre un fattore moltiplicativo opportuno. Nell'esempio, l'energia annua consumata dai carichi è stata fatta pressoché coincidere

con l'energia annua prodotta dal sistema fotovoltaico (ma i due valori potrebbero essere anche diversi tra loro).

Il file *loads.txt* fornito con *Sunsim Storage* contiene alcuni esempi, è però possibile aggiungerne altri in modo piuttosto semplice come riportato nell'appendice C.

Visualizzazioni grafiche

SunSim Storage è in grado di visualizzare i risultati ottenuti in modi differenti per mezzo di strumenti di selezione molto semplici.

L'intervallo temporale che si intende visualizzare può essere uno dei seguenti:

- Monthly visualizzazione dei 12 valori medi mensili dell'anno
- Day monthly visualizzazione dell'andamento giornaliero medio in un dato mese
- Daily visualizzazione dell'andamento di uno specifico giorno dell'anno

Con riferimento alle variabili visualizzate, è possibile avere i seguenti grafici:

- Solar valori della radiazione diretta e diffusa
- Production produzione fotovoltaica
- Consumption consumi dei carichi elettrici
- Prod. + Cons. produzione fotovoltaica e consumi elettrici nello stesso grafico
- Storage energie in transito da e verso l'accumulo confrontate con la produzione e i consumi
- Grid exchange energie in transito da e verso la rete confrontate con la produzione e i consumi
- Self consumption percentuale dei consumi che sono stati soddisfatti dall'energia prodotta
 State of charge stato di carica dell'accumulo

Nella figura seguente è visualizzata l'area che permette di effettuare queste scelte.

Da una semplice simulazione come quella portata ad esempio (3 kWp FV + 3 kWh accumulo) e con la tipologia di consumi residenziali indicata, si può notare che in alcuni periodi autunno-invernali vi sono giornate in cui l'energia prodotta è totalmente autoconsumata e l'accumulo è quindi in grado di trasferire tutta la produzione diurna nelle ore serali. Viceversa, nei mesi di maggiore produzione, l'accumulo non è in grado di immagazzinare tutta l'energia in eccesso e, una volta saturato, deve essere necessariamente scollegato fino al termine della giornata, quando potrà restituire l'energia accumulata.

Le figure seguenti illustrano questi comportamenti per due giorni specifici scelti nei mesi di dicembre e luglio.

Il programma riporta anche una tabella riassuntiva che indica le energie complessivamente scambiate nel corso dell'anno. Nel seguito è riportato un esempio.

```
Energy from grid = 1795 kWh
Energy to grid = 1616 kWh
Charge residue = 0 kWh
Energy from storage = 537 kWh
Energy to storage = 715 kWh
Storage losses = 179 kWh
```

Reports

SunSim Storage permette di ottenere dei report utilizzabili dai programmi di elaborazione testi e dai fogli elettronici, in quanto è in grado di produrre file .RTF (Rich Text Format) e .CSV (Comma-Separated Values).

Nella sezione Save results è possibile generare i report che interessano, e cioè:

- Text RTF File leggibile da qualsiasi word processor
- CSV (i.f) File leggibile da qualsiasi foglio elettronico con il punto che separa la parte decimale dalla parte intera e i valori separati tra loro dalla virgola (standard anglosassone)
- CSV (i,f) File leggibile da qualsiasi foglio elettronico con la virgola che separa la parte decimale dalla parte intera e i valori separati tra loro dal punto (standard italiano)

File di testo .RTF

Il contenuto del file .RTF è differente a seconda dell'intervallo temporale selezionato.

Nel caso sia stato selezionato Monthly, il file riporta le medie mensili e gli andamenti giornalieri. Si tratta del report più comunemente utilizzato e che è in grado di fornire una visione d'insieme degli andamenti delle variabili nel sistema, come nell'esempio riportato nella figura seguente che visualizza una porzione del file.

MONTHLY AVERAGES

	S	Solar Yield		PV	Load	From	То	From	То	State of	Self
Month	[] Direct	kWh/m²d Diffuse] Total	production [kWh]	consump. [kWh]	grid [kWh]	grid [kWh]	storage [kWh]	storage [kWh]	charge [kWh]	prod. [%]
1	1.86	0.78	2.63	196	470	283	0	25	33	1	40
2	2.50	1.06	3.56	239	396	193	23	43	57	2	51
3	3.01	1.61	4.62	344	421	178	84	48	64	2	58
4	3.45	1.94	5.39	388	391	136	117	47	62	2	65
5	4.00	2.25	6.25	465	399	126	176	48	64	2	68
6	4.74	2.15	6.89	496	362	106	224	47	62	2	71
7	5.70	1.74	7.44	553	314	86	309	48	64	2	73
8	5.24	1.66	6.90	513	233	58	323	48	64	2	75
9	4.10	1.63	5.73	413	310	110	196	47	62	2	65
10	3.11	1.30	4.41	328	329	142	125	48	64	2	57
11	2.31	0.88	3.19	230	354	176	36	47	62	2	50
12	1.86	0.70	2.56	190	376	202	2	40	54	1	46
Avg	3.49	1.48	4.96		c No. CONSIS	10000	0.0000000		200200	2	60
Sum				4356	4357	1795	1616	537	715		

DAILY TRENDS - MONTHLY AVERAGES

January											
	S	olar Yiel	d	PV	Load	From	То	From	То	State of	Self
Hour		[W/m ²]		production	consump.	grid	grid	storage	storage	charge	prod.
	Direct	Diffuse	Total	[KWN]	[kwn]	IKWNJ	[KWN]	[kwn]	[KWN]	[KWN]	[%]
0	0	0	0	0.00	0.38	0.38	0.00	0.00	0.00	1.20	0
1	0	0	0	0.00	0.31	0.31	0.00	0.00	0.00	1.20	0
2	0	0	0	0.00	0.27	0.27	0.00	0.00	0.00	1.20	0
3	0	0	0	0.00	0.24	0.24	0.00	0.00	0.00	1.20	0
4	0	0	0	0.00	0.24	0.24	0.00	0.00	0.00	1.20	0
5	0	0	0	0.00	0.30	0.30	0.00	0.00	0.00	1.20	0
6	0	0	0	0.00	0.42	0.42	0.00	0.00	0.00	1.20	0
7	18	11	29	0.07	0.54	0.48	0.00	0.00	0.00	1.20	12
8	105	51	156	0.37	0.67	0.30	0.00	0.00	0.00	1.20	55
9	201	86	287	0.69	0.80	0.15	0.00	0.00	0.03	1.21	82
10	275	111	386	0.93	0.83	0.03	0.00	0.00	0.12	1.28	97
11	315	125	439	1.05	0.81	0.00	0.00	0.00	0.24	1.44	100
12	317	125	442	1.06	0.79	0.00	0.00	0.00	0.27	1.67	100
13	280	113	393	0.94	0.64	0.00	0.00	0.00	0.30	1.92	100
14	209	89	297	0.71	0.62	0.00	0.01	0.02	0.10	2.10	100
15	113	54	168	0.40	0.69	0.02	0.00	0.26	0.00	1.98	97
16	23	13	36	0.09	0.86	0.42	0.00	0.36	0.00	1.56	52
17	0	0	0	0.00	1.03	0.89	0.00	0.14	0.00	1.28	14
18	0	0	0	0.00	1.08	1.05	0.00	0.03	0.00	1.21	3
19	0	0	0	0.00	1.06	1.06	0.00	0.00	0.00	1.20	0
20	0	0	0	0.00	0.81	0.81	0.00	0.00	0.00	1.20	0
21	0	0	0	0.00	0.70	0.70	0.00	0.00	0.00	1.20	0
22	0	0	0	0.00	0.58	0.58	0.00	0.00	0.00	1.20	0
23	0	0	0	0.00	0.48	0.48	0.00	0.00	0.00	1.20	0
Avg	77	32	110			1		22		1.35	42
Sum				6.32	15.17	9.13	0.01	0.80	1.07		

February

Hour	S Direct	olar Yiel [W/m²] Diffuse	d Total	PV production [kWh]	Load consump. [kWh]	From grid [kWh]	To grid [kWh]	From storage [kWh]	To storage [kWh]	State of charge [kWh]	Self prod. [%]
0	0	0	0	0.00	0.36	0.36	0.00	0.00	0.00	1.20	0
1	0	0	0	0.00	0.30	0.30	0.00	0.00	0.00	1.20	0

Nel caso invece sia stato selezionato Day monthly, il file riporta i valori puntuali con intervallo di 5 minuti dell'andamento giornaliero medio per il mese selezionato, come nell'esempio riportato nella figura seguente che visualizza una porzione del file.

DETAILED DAILY TREND - MONTHLY AVERAGES

January

	S	olar Yiel	d	PV	Load	From	To	From	To	State of	Self
Hour	Direct	[W/m ²]	Total	production	consump.	grid	grid	storage	storage	charge [kWb]	prod.
00:00	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:05	Ō	0	Ō	0.00	32.98	32.98	0.00	0.00	0.00	0.40	Ō
00:10	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:15	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:20	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:25	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:30	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:35	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:40	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	0
00:45	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	1
00:50	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	1
00:55	0	0	0	0.00	32.98	32.98	0.00	0.00	0.00	0.40	1
01:00	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	1
01:05	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	1
01:10	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	1
01:15	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:20	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:25	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:30	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:35	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:40	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:45	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:50	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
01:55	0	0	0	0.00	31.17	31.16	0.00	0.00	0.00	0.40	0
02:00	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:05	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:10	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:15	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:20	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:25	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:30	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:35	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	0
02:40	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	1
02:45	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	1
02:50	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	1
02:55	0	0	0	0.00	30.18	30.18	0.00	0.00	0.00	0.40	1
03:00	0	U	0	0.00	29.62	29.62	0.00	0.00	0.00	0.40	1
03:05	0	U	0	0.00	29.62	29.62	0.00	0.00	0.00	0.40	1
03:10	0	U	0	0.00	29.62	29.62	0.00	0.00	0.00	0.40	1
03:15	0	0	0	0.00	29.62	29.62	0.00	0.00	0.00	0.40	1

Qualora infine sia stato selezionato Daily, il file riporta i valori puntuali con intervallo di 5 minuti dell'andamento giornaliero per il giorno selezionato, come nell'esempio riportato nella figura seguente che visualizza una porzione del file.

DETAILED DAILY TREND - 08 July

08 July

	S	olar Yiel	d	PV	Load	From	То	From	То	State of	Self
Hour		[W/m ²]		production	consump.	grid	grid	storage	storage	charge	prod.
00.00	Direct	Diffuse	Total	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]	[kWh]	[%]
00:00	0	0	0	0.00	62.71	0.30	0.00	0.00	0.00	1.20	0
00:00	0	0	0	0.00	62.71	0.30	0.00	0.00	0.00	1.20	0
00:10	0	0	0	0.00	60.24	0.30	0.00	0.00	0.00	1.20	0
00.15	0	0	0	0.00	60.34	0.29	0.00	0.00	0.00	1.20	1
00.20	0	0	0	0.00	60.34	0.23	0.00	0.00	0.00	1.20	25
00:20	0	0	0	0.00	55 40	0.23	0.00	0.00	0.00	1.20	91
00:35	0	0	0	0.00	55.40	0.27	0.00	0.00	0.00	1.40	100
00:40	0	0	0	0.00	55 40	0.27	0.00	0.00	0.00	1.90	100
00:45	0	0	0	0.00	52.74	0.26	0.00	0.00	0.00	2.74	100
00:50	0	0	0	0.00	52.74	0.26	0.00	0.00	0.00	3.00	100
00:55	0	0	0	0.00	52.74	0.26	0.00	0.00	0.00	3.00	100
01:00	0	0	0	0.00	53.33	0.26	0.00	0.00	0.00	3.00	100
01:05	0	0	0	0.00	53.33	0.26	0.00	0.00	0.00	3.00	100
01:10	0	0	0	0.00	53.33	0.26	0.00	0.00	0.00	3.00	100
01:15	0	0	0	0.00	50.37	0.24	0.00	0.00	0.00	3.00	100
01:20	0	0	0	0.00	50.37	0.24	0.00	0.00	0.00	3.00	100
01:25	0	0	0	0.00	50.37	0.24	0.00	0.00	0.00	2.95	100
01:30	0	0	0	0.00	49.04	0.24	0.00	0.00	0.00	2.54	100
01:35	0	0	0	0.00	49.04	0.24	0.00	0.00	0.00	1.98	100
01:40	0	0	0	0.00	49.04	0.24	0.00	0.00	0.00	1.45	100
01:45	0	0	0	0.00	47.79	0.23	0.00	0.00	0.00	1.20	4
01:50	0	0	0	0.00	47.79	0.23	0.00	0.00	0.00	1.20	0
01:55	0	0	0	0.00	47.79	0.23	0.00	0.00	0.00	1.20	0
02:00	0	0	0	0.00	48.30	0.23	0.00	0.00	0.00	1.20	0
02:05	0	0	0	0.00	48.30	0.23	0.00	0.00	0.00	1.20	0
02.10	0	0	0	0.00	40.30	0.23	0.00	0.00	0.00	1.20	0
02.15	0	0	0	0.00	40.30	0.23	0.00	0.00	0.00	1.20	2
02.20	0	0	0	0.00	40.30	0.23	0.00	0.00	0.00	1.20	20
02.20	0	0	0	0.00	40.30	0.23	0.00	0.00	0.00	1.20	94
02:30	0	0	0	0.00	44.39	0.21	0.00	0.00	0.00	1.23	100
02:40	0	0	0	0.00	44 39	0.21	0.00	0.00	0.00	2.22	100
02:45	0	0	0	0.00	43.65	0.21	0.00	0.00	0.00	2.96	100
02:50	0	0	0	0.00	43.65	0.21	0.00	0.00	0.00	3.00	100
02:55	0	0	0	0.00	43.65	0.21	0.00	0.00	0.00	3.00	100
03:00	0	0	0	0.00	43.50	0.21	0.00	0.00	0.00	3.00	100
03:05	0	0	0	0.00	43.50	0.21	0.00	0.00	0.00	3.00	100
03:10	0	0	0	0.00	43.50	0.21	0.00	0.00	0.00	3.00	100
03:15	0	0	0	0.00	46.31	0.22	0.00	0.00	0.00	3.00	100
03:20	0	0	0	0.00	46.31	0.22	0.00	0.00	0.00	3.00	100
03:25	0	0	0	0.00	46.31	0.22	0.00	0.00	0.00	3.00	100
03:30	0	0	0	0.00	43.36	0.21	0.00	0.00	0.00	2.83	100
03:35	0	0	0	0.00	43.36	0.21	0.00	0.00	0.00	2.46	100
03:40	0	0	0	0.00	43.36	0.21	0.00	0.00	0.00	1.99	100
100 10			0	0.00	10.00	0.04	0.00	0.00	0.00	1 50	100

File per foglio elettronico .CSV

I file di tipo .CSV prodotti da *SunSim Storage*, contengono le stesse informazioni dei file di report .RTF ma queste sono leggibili da un qualsiasi foglio elettronico.

Appendice A

Tipi di file gestiti da SunSim Storage

LOADS.TXT	File contenente i dati delle tipologie di carico che SunSim Storage può utilizzare
<filename>.SIT</filename>	File contenente la latitudine e i valori di radiazione solare giornaliera media mensile per un dato sito non incluso nell'elenco proposto dal programma
<filename>.RTF</filename>	File di report leggibile da un word processor
<filename>.CSV</filename>	File di report leggibile da un foglio elettronico

File facenti parte del pacchetto software

SunSim Storage.exe	Programma eseguibile							
Protection.txt	File contenente i 3 caratteri da digitare per abilitare il funzionamento del programma							
Licence.PDF	Licenza d'uso del programma							
SunSim_Storage_Manual.PDF	Manuale d'uso di <i>SunSim Storage</i>							

Possibili problemi di utilizzo in alcune tipologie di PC

Benché SunSim Storage sia stato realizzato allo scopo di avere la più ampia diffusione possibile su svariati tipi di PC e versioni del sistema operativo Microsoft Windows, in alcuni casi sono stati rilevati i problemi di compatibilità elencati nel seguito.

Windows 8.0 e Windows 8.1

In alcune installazioni di queste versioni di Windows non risulta presente la libreria msvcr100.dll, la quale è spesso utilizzata dai programmi scritti in C, tra cui SunSim Storage. In questi casi si può rimediare aggiungendo il file corretto nella cartella di sistema oppure installando Microsoft Visual C++ 2010 (gratuito).

Windows XP

Su questa versione di Windows non si segnalano problemi di funzionamento, ma l'icona del programma non è sempre interpretata correttamente e in questi casi il sistema operativo la rappresenta con l'icona di default per i programmi di Windows.

Appendice B

Metodo utilizzato per il calcolo della radiazione solare

Percorsi solari e diagramma delle ombre

I valori dell'elevazione solare θ_h e dell'angolo azimutale θ_a sono ricavati sulla base della latitudine Φ e della declinazione δ (curve diverse hanno declinazioni diverse). Ciascuna curva è quindi ottenuta facendo variare l'angolo orario ω nelle formule seguenti.

 $\cos\theta_h = \sin\delta \cdot \sin\Phi + \cos\delta \cdot \cos\Phi \cdot \cos\omega$

$$\cos\theta_a = \frac{\sin\theta_h \cdot \sin\Phi - \sin\delta}{\cos\theta_h \cdot \cos\Phi}$$

Dove:

$$\delta = 23,45 \cdot \sin\left(360 \cdot \frac{284 + n}{365}\right) \qquad (n \text{ è il giorno dell'anno conteggiato a partire dal 1° gennaio})$$

 $\omega = 15 \cdot t + \Delta \omega - 180$

(t è il tempo in ore e $\Delta \omega$ dipende dalla longitudine del sito)

Orientamento del piano dei moduli

I valori possibili per l'inclinazione del piano dei moduli β sono compresi tra 0° e 90°, mentre quelli di azimut α devono essere compresi tra -180° e +180° rispetto a Sud. Questa possibilità di operare su tutto il diagramma consente di simulare anche inclinazioni verso Nord del piano dei moduli

Calcolo della radiazione solare diretta

Il calcolo della radiazione solare diretta avviene prendendo in esame separatamente i percorsi solari relativi a singoli mesi. Ciascun percorso solare viene poi considerato come composto da un certo numero di punti, per ciascuno dei quali viene calcolata la radiazione sul piano dei moduli sulla base dei seguenti fattori:

- dati di radiazione solare
- angolo θ tra il percorso della radiazione diretta e la normale al piano dei moduli
- torbidità dell'atmosfera

I dati di radiazione solare sono quelli precedentemente caricati per il sito, mentre l'angolo θ deve essere calcolato mediante l'espressione:

 $\cos\theta = \sin\delta \cdot \sin\Phi - \sin\delta \cdot \cos\Phi \cdot \sin\beta \cdot \cos\alpha$ $+ \cos\delta \cdot \cos\Phi \cdot \cos\beta \cdot \cos\omega + \cos\delta \cdot \sin\Phi \cdot \sin\beta \cdot \cos\alpha \cdot \cos\omega$ $+ \cos\delta \cdot \sin\beta \cdot \sin\alpha \cdot \sin\omega$

La torbidità dell'atmosfera è calcolata con la formula di Linke:

 $I_B = I_0 \cdot e^{-\delta_{CDA} \cdot T_L \cdot am}$

La formula di Linke permette quindi di calcolare il valore della radiazione solare diretta al suolo I_B a partire da quella extraatmosferica I_0 . Nella formula interviene ovviamente il valore di Air mass *am*, posto pari a $1/\sin\theta_h$, e il coefficiente di torbidità di Linke, variabile a seconda del sito e della stagione dell'anno, ma che per ragioni di semplicità è stato posto costante e pari a 3, considerato quest'ultimo come valore medio normalmente utilizzato.

Per il parametro δ_{CDA} esistono diverse espressioni. Tra queste è stata scelta quella proposta da Kasten, valida per un ampio intervallo di *am* :

$$\delta_{CDA} = \frac{1}{9,4+0,9\cdot am}$$

Calcolo della radiazione diffusa

Il calcolo della radiazione diffusa incidente sul piano dei moduli I_D tiene conto dell'inclinazione β di questi rispetto al piano orizzontale e si avvale dell'espressione:

$$I_D = I_{D0} \cdot \frac{1 + \cos \beta}{2}$$

Appendice C

Struttura del file *loads.txt*

Il file loads.txt consente una gestione abbastanza flessibile dei dati di consumo elettrico, in quanto è in grado di trattare sia tabelle molto semplici che tabelle dettagliate, contenenti dati raccolti con elevata frequenza.

Nel seguito sono riportate le principali caratteristiche delle tabelle contenute in loads.txt.

- Il file può contenere fino a 10 tipologie di carichi (tabelle), anche aventi formati differenti. Il valore intero contenuto nella prima riga (Number of loads) ne specifica il numero.
- Ciascuna tipologia di carichi ha un proprio nome, da digitare senza spazi, (Load name) di 45 caratteri massimi.
- I dati possono essere di tipo mensile, dove per ogni mese si ha una serie di dati relativi al giorno medio, oppure di tipo giornaliero, nel qual caso è necessario introdurre 365 serie di dati raggruppati per ogni giorno dell'anno. Di conseguenza, un apposito valore nell'intestazione di ciascuna tabella specifica se si tratta di dati:
 - <u>Mensili</u>, in questo caso occorre digitare $0 (=0 \rightarrow Monthly data)$
 - <u>Giornalieri</u>, in questo caso occorre digitare 1 (=1 \rightarrow Daily data)
- Nel caso di dati giornalieri, ogni mese si considera formato dal numero di giorni corrispondente all'anno di 365 giorni (28 giorni per febbraio).
- Come è stato detto, la differenza tra i dati mensili e giornalieri sta nel fatto che i dati mensili considerano gli assorbimenti dei giorni di ciascun mese come tutti uguali, mentre i dati giornalieri sono differenti per ciascun giorno dell'anno. In altre parole, nel caso di dati mensili si hanno 12 righe di dati orari o relativi a frazioni di ora, mentre nel caso di dati giornalieri si hanno 365 righe per gli stessi dati.
- In tutti i casi, in corrispondenza dell'inizio dei dati per ciascun mese, un numero indica il mese di riferimento (Month), compreso tra 1 (gennaio) e 12 (dicembre).

- La frequenza minima dei dati giornalieri è di tipo orario (24 valori per ciascun giorno), ma il programma è in grado di accettare frequenze anche maggiori, purché corrispondenti a un multiplo di 5 minuti in ciascuna ora. Il numero massimo corrisponde all'intervallo di tempo utilizzato nei calcoli, pari a 5 minuti, ossia 12 dati per ogni ora. Un apposito valore intero in ciascuna tabella, compreso tra 1 e 12 (Number of data per hour), purché sottomultiplo di 12 (ossia 60/5), specifica tale numero di dati orari. Al fine di rendere più comprensibile l'uso di questo parametro, nel seguito si riporta il numero di dati di consumo per ciascun giorno che SunSim Storage si aspetta di leggere a seconda del valore impostato.
 - 1 \rightarrow 24 valori giornalieri (1 dato ogni ora)
 - $2 \rightarrow 48$ valori giornalieri (1 dato ogni mezzora)
 - $3 \rightarrow 72$ valori giornalieri (1 dato ogni 20 minuti)
 - $4 \rightarrow 96$ valori giornalieri (1 dato ogni 15 minuti)
 - $6 \rightarrow 144$ valori giornalieri (1 dato ogni 10 minuti)
 - 12 → 288 valori giornalieri (1 dato ogni 5 minuti)
- I dati di consumo contenuti nelle tabelle si intendono espressi in kW (valore medio di potenza nel periodo) con un numero di decimali a piacere.

La figura seguente illustra visivamente una porzione del file loads.txt, evidenziandone la struttura. E' importante che l'organizzazione e il numero di dati effettivamente inseriti sia congruente con quanto indicato nei campi prima specificati. In caso contrario il programma segnala l'errore e non può svolgere correttamente i calcoli.

N	umber	of loads	Lo	ad nam	e (no space	allowed	3)			
4			100	=0>	Monthly o	lata				
1	taly-lo	bads-201	> 01	-Nur	mber of dat	ta per ho	our			
32.981	31.165	30.177	29.621 29	. 813 31.	.591 37.210	44.580	49.469	50.846	50.665 50.4	
34.403	32.062	30.994	30.700 30	. 912 32	.319 37.582	43.669	49.235	52.129	52.933 53.(
31.182	29.459	28.730	28.335 28	. 521 30	204 33.598	39.242	43.401	44.787	45.432 45.2	
4 30.697	28.927	28.012	27.474 27	.727 29	265 32.827	38.253	42.924	44.717	45.538 45.2	
5 30.807	28.863	28.114	27.788 28	. 027 28	.811 31.582	37.202	41.812	43.915	44.576 44.3	
6 36.051	33.936	32.850	32.208 31	.945 31	.856 34.665	40.176	46.135	49.343	50.418 51.4	
7 36.452	34.394	33.320	32.600 32	. 529 33	.040 35.481	40.534	46.066	49.209	50.500 51.1	
8 28 642	27 115	26 044	25 358 24	978 24	874 24 071	24 910	26 795	28 367	29 327 29 (
9	20 220	20.286	28 042 20	208 20	572 24 727	20 485	12 701	45 287	15 651 15 (
10	20.335	29.200	20.945 25	417 20	701 22 627	39.405	43.791	43. 062	43.031 43.:	
11	28.221	27.452	27.237 27	.417 28	./01 33.03/	39.142	42.773	43.902	44.080 44.5	
30.615 12	28.861	27.963	27.650 27	.984 29	.631 34.720	39.966	44.189	45.529	45.63/ 45.:	
31.169	29.235	28.363	27.974 28	3.208 29	.802 35.343	42.281	46.329	47.775	47.608 47.8	
Italy_A	ggregat	te_Resid	ential (1 4	►=1> U	ally data	а		Data in kW	
88.26	87.52	86.86	81.10	74.67	75.56	77.41	72.16	70.68	69.65 7 54.88	
88.11	85.01	78.51	74.97	69.06	63.30	57.61	56.80	55.69	52.07	
91.29	85.46	82.28	80.29	74.82	62.85	58.87	58.57	57.98	57.76	
96.09	93.36 87.01	88.19	80.06	72.53	67.80	66.25	65.22	62.56	55.69	
91.96	86.71	84.27	87.15	84.27	83.46	79.10	72.09	69.65	62.04	
90.40	81.39	76.15	71.35	64.41	62.78	61.16	57.54	55.32	51.48	
80.21	79.62	76.45	72.68	66.77	63.67	57.09	53.47	55.84	54.07	
79.03	79.33	67.80	68.54	64.70	61.60	62.34	57.24	56.95	55.54	
78.66	74.23	71.64	72.01	67.06	64.78	55.62	53.25	51.26	51.85	
94.76	89.08	81.84	78.00	71.87	69.95	72.68	65.66	60.05	59.83	
79 99	73 49	69 28	68 62	61 01	59 09	56 13	54 36	53 70	51 41 4	
87.52	76.59	68.91	63.96	59.46	61.16	58.05	52.51	55.69	51.85 5	
75.48	68.32	64.48	68.62	62.93	61.16	56.36	53.55	52.44	56.43	
87.97	78.59	73 12	68 32	68 25	64.18	57 68	56.06	56 50	53 55	
96.02	89.52	83.46	82.50	77.70	71.35	65.96	62.34	57.54	57.83	
85.31	81.47	75.63	75.78	71.50	70.46	69.35	62.34	60.93	61.97 (
83.68	71 64	67 14	69.06	50 82	61.89	59.9/	57.91	55.25	50.82	
83.39	79.47	73.79	67.51	63.67	63.74	58.79	54.80	54.29	52.44 4	
88.56	79.69	73.49	68.84	63.00	59.90	58.42	55.47	49.86	48.67 5	
/5.34	/1.13	68.32	60.64	61.10	56.06	55.40	56.30	55.62	51./8 4	
89.59	85.38	85.75	79.77	71.27	64.04	64.04	62.34	58.42	60.71	
82.87	84.20	73.79	73.49	70.17	67.29	63.08	60.57	58.13	57.46	
82.58	/4.82	66.18	68.76	66.55	69.95	66.40	60.05	56.43	53.62	
79.10	73.27	70.61	69.28	65.51	64.18	59.38	58.94	58.72	57.46	
85.90	79.55	71.35	65.44	66.77	66.55	62.04	59.38	54.51	53.55 4	
							~	C . d		